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Polynomial optimization

Given a polynomials f and g1, . . . , gm, a polynomial optimization problem
(PoP) is:

f ∗ = inf
x∈K

f (x), (PoP)

where
K = {x ∈ Rn : gi (x) ≥ 0, for i = 1, . . . ,m}

The problem can be reformulated as:

f ∗ = sup{λ : f (x)− λ ≥ 0 ∀x ∈ K}

▶ Polynomial equations p(x) = 0 can be added (p(x) ≥ 0, p(x) ≤ 0).

▶ Solving (PoP) is very hard in general.

3 / 17



Polynomial optimization

Given a polynomials f and g1, . . . , gm, a polynomial optimization problem
(PoP) is:

f ∗ = inf
x∈K

f (x), (PoP)

where
K = {x ∈ Rn : gi (x) ≥ 0, for i = 1, . . . ,m}

The problem can be reformulated as:

f ∗ = sup{λ : f (x)− λ ≥ 0 ∀x ∈ K}

▶ Polynomial equations p(x) = 0 can be added (p(x) ≥ 0, p(x) ≤ 0).

▶ Solving (PoP) is very hard in general.

3 / 17



Polynomial optimization

Given a polynomials f and g1, . . . , gm, a polynomial optimization problem
(PoP) is:

f ∗ = inf
x∈K

f (x), (PoP)

where
K = {x ∈ Rn : gi (x) ≥ 0, for i = 1, . . . ,m}

The problem can be reformulated as:

f ∗ = sup{λ : f (x)− λ ≥ 0 ∀x ∈ K}

▶ Polynomial equations p(x) = 0 can be added (p(x) ≥ 0, p(x) ≤ 0).

▶ Solving (PoP) is very hard in general.

3 / 17



Examples of semialgebraic sets K

Sphere: {x ∈ Rn :
∑n

i=1 x
2
i ≤ 1}

Polytopes: Linear inequalities

Nonconvex in general: {1 ≤ x2 + y 2 ≤ 4}

{0, 1}n Discrete sets x2
i = xi , for i ∈ [n]
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Sum-of-squares approximations

K = {x ∈ Rn : gi (x) ≥ 0, for i = 1, . . . ,m}

f ∗ = sup{λ : f (x)− λ ≥ 0 ∀x ∈ K}

Testing whether a polynomial is nonnegative on K is hard

The strategy is to relax the constraint ≥ 0 for the constraint

”is a sum of squares”

Definition. A polynomial p is a sum of squares (SOS) if

p = q2
1 + q2

2 + · · ·+ q2
m

for some polynomials qi .

If f is SOS, then f (x) ≥ 0 for all x ∈ Rn.
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Why sums of squares?

Sum-of-squares ←→ PSD matrix

is p = x4 − 2x3y + 2x2y 2 − 2x2y − 2x + 1 a sum of squares?

Yes
p = (x2 − xy)2 + (x − 1)2 + (x − xy)2 Let mt = (1, x , y , x2, xy , y 2)

p = mtQm, where Q ⪰ 0

p is SOS ⇐⇒ p = mtQm, for some Q ⪰ 0

▶ The constrain “p is a sum of squares” can be modeled via a semidefinite
program.
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Certificates using sums of squares: On semialgebraic sets

Let K = {x ∈ Rn : g1(x) ≥ 0, . . . , . . . , gm(x) ≥ 0}

The quadratic module defined by ggg is

M(ggg) =
{
σ0 + σ1g1 + · · ·+ σmgm : σi is SOS

}
f ∈ M(ggg) =⇒ f ≥ 0 on K

Theorem (Putinar)

Assume the archimedean conditions holds: N −
∑n

i=1 x
2
i ∈ M(ggg), for some

N ∈ N.
If f > 0 on K , then f ∈ M(ggg)

▶ The archimedean condition implies that K is compact.

▶ The condition f > 0 is necessary in general.
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Lasserre hierarchy for polynomial optimization

K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}

f ∗ = sup{λ : f (x)− λ ≥ 0 on K}

Define the truncated quadratic module

M(ggg)r =
{

σ0︸︷︷︸
deg≤2r

+ σ1g1︸︷︷︸
deg≤2r

+ · · ·+ σmgm︸ ︷︷ ︸
deg≤2r

: σi is SOS
}

The Lasserre hierarchy for polynomial optimization is:

f (r) = sup{λ : f (x)− λ ∈ M(ggg)r}

If K is archimedean (Compact + Technical condition) f (r) → f ∗

We say that we have finite convergence if f (r) = f ∗ for some r .

▶ It is not always achieved.
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When do we have finite convergence?

f ∗ = inf
x∈K

f (x), (PoP)

K = {x ∈ Rn : gi (x) ≥ 0, hj(x) = 0 for i ∈ [m], j ∈ [l ]}

Various results by Lasserre, Marshall, Nie, Scheiderer, Schweighofer.

1. When VR(h) is finite. [Nie, 2012]

2. When (PoP) has finitely many minimizers and they satisfy the classical
optimality conditions. [Nie, 2014]
▶ Finite convergence holds generically

In this talk: What is the complexity of

1. Deciding whether (PoP) has finitely many minimizers?

2. Deciding whether the Lasserre hierarchy of (PoP) has finite convergence?

9 / 17



When do we have finite convergence?

f ∗ = inf
x∈K

f (x), (PoP)

K = {x ∈ Rn : gi (x) ≥ 0, hj(x) = 0 for i ∈ [m], j ∈ [l ]}

Various results by Lasserre, Marshall, Nie, Scheiderer, Schweighofer.

1. When VR(h) is finite. [Nie, 2012]

2. When (PoP) has finitely many minimizers and they satisfy the classical
optimality conditions. [Nie, 2014]
▶ Finite convergence holds generically

In this talk: What is the complexity of

1. Deciding whether (PoP) has finitely many minimizers?

2. Deciding whether the Lasserre hierarchy of (PoP) has finite convergence?

9 / 17



Complexity questions: Linear case

Let (L-P) be a linear program

Finitely many minimizers?

▶ Deciding whether a linear program has finitely many minimizers (then
unique) is in P [Appa, 2002].

Finite convergence?

▶ Yes, always. The Lasserre hierarchy (at r = 1) finds the optimal solution.
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Stability number of a graph

Let G = (V ,E) be a graph.

S ⊆ V is stable if S contains no edge.

The stability number of G
is α(G) := max{|S | : S is stable}

Discrete formulation

α(G) = max
{∑

i∈V xi : x
2
i = xi for i ∈ V , xixj = 0 for {i , j} ∈ E

}
The Lasserre hierarchy has finite convergence as VR(h) is finite.

Motzkin-Straus 1965

1

α(G)
= min

{
xT (AG + I )x :

∑n
i=1 xi = 1, x ≥ 0

}
When do we have finite convergence?
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Motzkin-Straus Formulation

1

α(G)
= min

{
xT (AG + I )x :

∑n
i=1 xi = 1, x ≥ 0

}

For any S stable of size α(G), x = 1
α(G)

χS is a minimizer:

Consider G = C5 the 5-cycle. Then, for any t ∈ [0, 1] we have:
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Role of Critical Edges

Definition. An edge e of G is critical if α(G \ e) = α(G) + 1.

Figure 1: C5, all edges are critical Figure 2: C6, no edge is critical

Theorem
Given a graph G and an edge e. The problem of deciding whether e is critical
in G is NP-hard.
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Minimizers of (M-S)

Theorem (Minimizers of (M-S))

Let x be feasible for (M-S) with support S := {i : xi > 0}, and C1,C2, . . . ,Ck

the connected components of the graph G [S ]. Then x is an optimal solution of
(M-S) if and only if the following holds:

▶ k = α(G),

▶ Ci is a clique for all i ∈ [k],

▶
∑
j∈Ci

xj =
1

α(G)
for all i ∈ [k].

In that case, all edges of G [S ] are critical.

4 3

2

1

5

Every optimal solution of problem (M-S) asso-
ciated to C5 has the following form (up to sym-
metry)

x1 =
1

2
, x3 + x4 =

1

2
and x2 = x5 = 0.

The only edges in the support of an optimal solution are critical.
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Perturbed Motzkin-Straus formulation

For an edge e ∈ E , consider the following problem

1

α(G)
= min xT (AG + I + AG\e)x subject to

n∑
i=0

xi = 1, x ≥ 0 (1)

The optimal value is 1
α(G)

as x = 1
α(G)

χS is a solution.

▶ Problem (1) has finitely many global minimizers if and only if e is not
critical in G .

Theorem (Laurent-V 2022)

The problem of deciding whether a polynomial optimization problem (even
quadratic over the simplex) has finitely many minimizers is NP-hard
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Deciding finite convergence is NP-hard

Theorem (Laurent-V 2022, V 2023+)

The Lasserre hierarchy of problem (1) has finite convergence if and only e is
not critical.

Idea of the proof.

”⇐=” The problem has finitely many minimizers and they satisfy the
optimality conditions. By Nie’s theorem, we have finite convergence.

”=⇒” Exploit the structure of the (infinitely many) minimizers to reach a
contradiction.

Corollary

The problem of deciding whether the Lasserre hierarchy of a polynomial
optimization problem has finite convergence is NP-hard.
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Final remarks

Summary

We show NP-hardness of:

▶ Deciding whether PoP has finitely many minimizers.

▶ Deciding whether the Lasserre hierarchy of a PoP has finite convergence.

Main tools:

▶ Motzkin-Straus formulation (and perturbations of it)

▶ Critical edges.

Related work
▶ A. Ahmadi and Zhang have used the Motzkin-Straus formulation for

obtaining complexity results in optimization (local minmizers, .. )
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