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Polynomial optimization

Given a polynomials f and gi,...,gm, a polynomial optimization problem
(PoP) is:

f :;21; f(x), (PoP)
where

K={x€eR":gi(x) >0, fori=1,...,m}
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Polynomial optimization

Given a polynomials f and gi,...,gm, a polynomial optimization problem
(PoP) is:

f :;21}‘( f(x), (PoP)
where

K={x€eR":gi(x) >0, fori=1,...,m}

The problem can be reformulated as:

Fr=sup{\: F(x) = A >0 VXEK}‘

> Polynomial equations p(x) = 0 can be added (p(x) > 0, p(x) < 0).
» Solving (PoP) is very hard in general.

3/17



Examples of semialgebraic sets K

Sphere: {x € R": 37 x* <1}

=17

Polytopes: Linear inequalities

//‘N\»
/ \ ) Nonconvex in general: {1 < x* + y? < 4}
{0,1}" Discrete sets x? = x;, for i € [n]
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Sum-of-squares approximations
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Sum-of-squares approximations

K={xeR":gi(x) >0, fori=1,...,m}

f*=sup{A:f(x)—A>0 VXGK}‘

Testing whether a polynomial is nonnegative on K is hard

The strategy is to relax the constraint > 0 for the constraint

"is a sum of squares”

Definition. A polynomial p is a sum of squares (SOS) if
pP=qi+d+ -+

for some polynomials g;.

If f is SOS, then f(x) > 0 for all x € R".
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Why sums of squares?

Sum-of-squares <+—  PSD matrix

is p=x*—2x°y 4+ 2x°y® — 2x’y — 2x + 1 a sum of squares?
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Why sums of squares?

Sum-of-squares <+—  PSD matrix

is p=x*—2x°y 4+ 2x°y® — 2x’y — 2x + 1 a sum of squares?

Yes
t 2 2
p=(x"=xy)’ +(x = 1)’ + (x = xy) Let m" = (1,x,y,x", xy,y")
2 g 3 - P &
F_ (000 1-1 0) (-l1 0000) (ot oo-l0)
- 1 g t ;|| T
m o m + m ] m + m 0
4 ] 5
o ) o
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p=m'Qm, where Q>0
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Why sums of squares?

Sum-of-squares <+—  PSD matrix

is p=x*—2x°y 4+ 2x°y® — 2x°y — 2x + 1 a sum of squares?

Yes
P:(X2_Xy)2+(x_1)2+(X_Xy)2 Let mt: (1,X7y7x2:Xy7y2)
2 Pa P Py Ps Ps

(000 1-1 0) (-1 0000) (0l 00-0)

m +m

—
Oloco-Q
3

p=m'Qm, where Q>0

’pisSOS<:>p:thm,forsomeQEO‘

» The constrain “p is a sum of squares” can be modeled via a semidefinite
program.
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Certificates using sums of squares: On semialgebraic sets

Let K={xeR":gi(x)>0,...,...,8m(x) >0}
The quadratic module defined by g is

M(g) = {00 + o181+ -+ Omgm : Tiis SOS}

‘feM(g):ngOnK‘
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Certificates using sums of squares: On semialgebraic sets

Let K={xeR":gi(x)>0,...,...,8m(x) >0}
The quadratic module defined by g is

M(g) = {00 + o181+ -+ Omgm : Tiis SOS}

‘feM(g):ngonK‘

Theorem (Putinar)

Assume the archimedean conditions holds: N — "7 | x? € M(g), for some
N e N.
IfFf >0 on K, then f € M(g)

» The archimedean condition implies that K is compact.

» The condition f > 0 is necessary in general.
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Lasserre hierarchy for polynomial optimization

K={xeR":gi(x)>0,...,gm(x) >0}

F* = sup{A: F(x) — A > 0 on K}

Define the truncated quadratic module

M(g),:{ o0 + o181 + -+ Omgm : Tiis SOS}

deg<2r  deg<2r deg<2r

The Lasserre hierarchy for polynomial optimization is:

£ — sup{A: f(x) — X € M(g)}
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Lasserre hierarchy for polynomial optimization

K={xeR":gi(x)>0,...,gm(x) >0}

F* = sup{A: F(x) — A > 0 on K}

Define the truncated quadratic module

M(g),:{ o0 + o181 + -+ Omgm : Tiis SOS}

deg<2r  deg<2r deg<2r
The Lasserre hierarchy for polynomial optimization is:
£ = sup{X: f(x) — X € M(g),}

If K is archimedean (Compact + Technical condition) (7 — f*

We say that we have finite convergence if () = f* for some r.

» [t is not always achieved.
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When do we have finite convergence?

f :):ren; f(x), (PoP)

K ={xeR":gi(x)>0,hj(x)=0forie[m]je][l}

Various results by Lasserre, Marshall, Nie, Scheiderer, Schweighofer.
1. When Vg(h) is finite.  [Nie, 2012]

2. When (PoP) has finitely many minimizers and they satisfy the classical
optimality conditions.  [Nie, 2014]
» Finite convergence holds generically
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When do we have finite convergence?

f :):ren; f(x), (PoP)

K ={xeR":gi(x)>0,hj(x)=0forie[m]je][l}

Various results by Lasserre, Marshall, Nie, Scheiderer, Schweighofer.
1. When Vg(h) is finite.  [Nie, 2012]

2. When (PoP) has finitely many minimizers and they satisfy the classical
optimality conditions.  [Nie, 2014]
> Finite convergence holds generically

In this talk: What is the complexity of
1. Deciding whether (PoP) has finitely many minimizers?

2. Deciding whether the Lasserre hierarchy of (PoP) has finite convergence?
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Complexity questions: Linear case

Let (L-P) be a linear program
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Let (L-P) be a linear program
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» Deciding whether a linear program has finitely many minimizers (then
unique) is in P [Appa, 2002].
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Complexity questions: Linear case

Let (L-P) be a linear program
Finitely many minimizers?

» Deciding whether a linear program has finitely many minimizers (then
unique) is in P [Appa, 2002].

Finite convergence?

> Yes, always. The Lasserre hierarchy (at r = 1) finds the optimal solution.
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Stability number of a graph

Let G = (V, E) be a graph.

S C V is stable if S contains no edge.

The stability number of G
is a(G) := max{|S| : S is stable}
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The stability number of G
is a(G) := max{|S| : S is stable}

Discrete formulation

a(G) = max . X,-:x,-2:X,-fori€V,x,-x-:Ofor i,j} € E
iev v

The Lasserre hierarchy has finite convergence as Vi (h) is finite.

Motzkin-Straus 1965

1 _ H T . n L
Q) = min {x (Ac+Nx: > xi=1,x> O}

When do we have finite convergence?
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Motzkin-Straus Formulation

1 . T n
7( j = min {x (Ac+Dx > xi=1,x 0}

For any S stable of size a(G), x = ;g x” is a minimizer:

5

b3
(¥ dom0) (1,0 ,

ﬂ L
0"y 2|4
FRh alli= Uoxg=L,

i <ey o Ale)
0
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Motzkin-Straus Formulation

1 . T n
7( j = min {x (Ac+Dx > xi=1,x O}

For any S stable of size a(G), x = ;g x” is a minimizer:

5

Sa—
(4r- 10 O}S 1;\ 0
0",

S

S
&.LLS) LtZ;L.D([(,:-j—-.

) Ky ) =die)

P Y

Consider G = Gs the 5-cycle. Then, for any t € [0, 1] we have:

£0,9,0 110014
(£, 0, L1100 ?
a1, ol110 el = (ErGet))a L
® oot L1 ||ofe 4
(00 [ 0
-
= -
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Role of Critical Edges

Definition. An edge e of G is critical if a(G \ €) = a(G) + 1.

Figure 1: Gs, all edges are critical Figure 2: Gg, no edge is critical
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Role of Critical Edges

Definition. An edge e of G is critical if a(G \ €) = a(G) + 1.

Figure 1: Gs, all edges are critical Figure 2: Gg, no edge is critical

Theorem
Given a graph G and an edge e. The problem of deciding whether e is critical

in G is NP-hard.
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Minimizers of (M-S)

Theorem (Minimizers of (M-S))

Let x be feasible for (M-S) with support S :={i : x; > 0}, and C1, G, ..., Ck
the connected components of the graph G[S]. Then x is an optimal solution of
(M-S) if and only if the following holds:

> k=aG),
» C; is a clique for all i € [K],

> > x5 = ﬁ for all i € [k].
JEG

In that case, all edges of G[S] are critical.
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Theorem (Minimizers of (M-S))

Let x be feasible for (M-S) with support S :={i : x; > 0}, and C1, G, ..., Ck
the connected components of the graph G[S]. Then x is an optimal solution of
(M-S) if and only if the following holds:

> k=aG),
» C; is a clique for all i € [K],

> > x5 = ﬁ for all i € [k].
JEG

In that case, all edges of G[S] are critical.

1 Every optimal solution of problem (M-S) asso-
5 ) ciated to Gs has the following form (up to sym-
metry)

1 1
X1:§,X3+X4:§andX2:X5:0.

The only edges in the support of an optimal solution are critical.
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Perturbed Motzkin-Straus formulation

For an edge e € E, consider the following problem

1 . . Z
ﬁ = min XT(AG + | 4 Ag\e)x subject to E xi=1,x>0
a
i=0
The optimal value is % as x = ﬁxs is a solution.

(1)
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Perturbed Motzkin-Straus formulation

For an edge e € E, consider the following problem
a(6) =minx"(A¢ + I + Ag\e)x subject to Zx,- =1,x>0 (1)
o

i=0

S

The optimal value is ﬁ as x = ﬁx is a solution.

» Problem (1) has finitely many global minimizers if and only if e is not
critical in G.

Theorem (Laurent-V 2022)

The problem of deciding whether a polynomial optimization problem (even
quadratic over the simplex) has finitely many minimizers is NP-hard
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Deciding finite convergence is NP-hard

Theorem (Laurent-V 2022, V 2023+)
The Lasserre hierarchy of problem (1) has finite convergence if and only e is
not critical.

Idea of the proof.
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Idea of the proof.

"<=" The problem has finitely many minimizers and they satisfy the
optimality conditions. By Nie's theorem, we have finite convergence.

"=" Exploit the structure of the (infinitely many) minimizers to reach a
contradiction.
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Deciding finite convergence is NP-hard

Theorem (Laurent-V 2022, V 2023+)

The Lasserre hierarchy of problem (1) has finite convergence if and only e is
not critical.

Idea of the proof.

"<=" The problem has finitely many minimizers and they satisfy the
optimality conditions. By Nie's theorem, we have finite convergence.

"=" Exploit the structure of the (infinitely many) minimizers to reach a
contradiction.

Corollary

The problem of deciding whether the Lasserre hierarchy of a polynomial
optimization problem has finite convergence is NP-hard.
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Final remarks

Summary
We show NP-hardness of:

» Deciding whether PoP has finitely many minimizers.

» Deciding whether the Lasserre hierarchy of a PoP has finite convergence.
Main tools:

» Motzkin-Straus formulation (and perturbations of it)

» Critical edges.
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Final remarks

Summary
We show NP-hardness of:

» Deciding whether PoP has finitely many minimizers.

» Deciding whether the Lasserre hierarchy of a PoP has finite convergence.
Main tools:

» Motzkin-Straus formulation (and perturbations of it)

» Critical edges.

Related work

» A. Ahmadi and Zhang have used the Motzkin-Straus formulation for
obtaining complexity results in optimization (local minmizers, .. )
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